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cases and 1.4 million deaths reported in 2019 alone [2]. 
In 2020, approximately 1.3  million fatalities worldwide 
were attributed to TB [3].

Prompt and precise recognizing tuberculosis is crucial 
for effectively managing, treating, and preventing disease 
transmission [4]. Studies have confirmed that conven-
tional diagnostic techniques like sputum smear micros-
copy and culturing methods, often need to be improved 
by issues related to sensitivity, specificity, and turnaround 
time [5]. Bacterial examinations, such as acid-fast stain-
ing techniques in conjunction with mycobacterial cul-
tures, continue to be the gold standard for diagnosing 
mycobacterial infections. The World Health Organiza-
tion (WHO) recommends using rapid molecular tests as 
the primary diagnostic method for TB. However, their 

Introduction
Tuberculosis (TB), caused by the bacterium Mycobac-
terium tuberculosis (MTB), presents a significant global 
health risk and leads to substantial illness and death on a 
worldwide scale [1]. This illness continues to be a major 
global health issue, with approximately 10  million new 
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Abstract
Tuberculosis represents a significant menace to health, leading to millions of cases and fatalities each year. 
Traditional diagnostic methods, while effective, have limitations, necessitating improved tools. Aptamers possessing 
remarkable specificity single-stranded DNA or RNA molecules promising in TB diagnosis due to their adaptability 
and precise biomarker detection capabilities. In this study, we aimed to evaluate the research on aptamer 
applications in TB diagnosis, evaluating the efficacy, limitations, and future prospects. The present systematic review 
study followed PRISMA guidelines, including peer-reviewed studies on aptamer efficacy in TB diagnosis. Eligibility 
criteria covered experimental and human studies on TB diagnosis, prognosis, progression, and treatment response. 
Of 1165 identified studies, 35 met inclusion criteria. Aptamers were utilized for MTB and mycobacterial antigen 
detection, showcasing notable sensitivity and specificity. Targeted antigens included ESAT-6, HspX, MPT 64, and 
IFN-γ. Various aptamer-based assays, such as electrochemical, fluorescent, and immunosensors, demonstrated 
effectiveness. Multiplex assays, particularly for IFN-γ, showed enhanced diagnostic accuracy. Aptamer-based assays 
exhibited discrimination between active TB and other conditions, showcasing their diagnostic value. Aptamers, 
especially in conjunction with nanomaterials, show promise in developing advanced TB biosensors with superior 
detection capabilities. Cost-effective devices with heightened sensitivity for clinical and screening use are crucial for 
TB control, emphasizing the need for ongoing research in this field.
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extensive implementation may require improvements 
due to their high cost in many laboratory settings [6–8]. 
Currently, in numerous developing nations, acid-fast 
staining microscopy of sputum samples continues to be 
extensively utilized for TB diagnosis because of its eco-
nomic efficiency and quick results [9, 10]. In this case, the 
main challenge pertains to the unreliability and restric-
tion of the sensitivity range, which fluctuates between 
20% and 80% [11, 12]. According to the WHO, conven-
tional acid-fast staining techniques only detect 28% of 
MTB cases as smear-positive [13].

Therefore, improved diagnostic tools are urgently 
needed for TB. In recent years, novel diagnostic technol-
ogies have offered promise in addressing these challenges 
[14]. Aptamers, which are individual strands of DNA or 
RNA possess remarkable strength and selectivity of bind-
ing for particular target molecules, are gaining growing 
interest for their potential use in diagnosing TB [15, 16]. 
The unique properties of aptamers, including their adapt-
ability for use in various diagnostic platforms and their 
potential for rapid and precise detection of TB-related 
biomarkers, make them a promising target for investiga-
tion in the context of TB diagnostics [17].

Despite their potential, aptamers have not yet been 
widely adopted in clinical diagnostics, largely due to sev-
eral key challenges. First, the selection process for aptam-
ers, known as SELEX (Systematic Evolution of Ligands by 
Exponential Enrichment), can be time-consuming and 
expensive, limiting large-scale development. Addition-
ally, although aptamers are highly specific, their stabil-
ity in biological environments remains a challenge, as 
they can be susceptible to degradation by nucleases [18]. 
Moreover, the standardization of aptamer-based diag-
nostic platforms and regulatory approval processes is still 
in its early stages, making their clinical application less 
straightforward compared to established diagnostic tech-
nologies [19].

Given the evolving landscape of TB diagnosis and the 
potential of aptamers as diagnostic tools, a comprehen-
sive assessment of the current state of research on apply-
ing aptamers in TB diagnosis is warranted. Therefore, this 
systematic review aimed to consolidate existing evidence 
and critically evaluate the efficacy, limitations, and future 
prospects of aptamer-based technologies in diagnosing 
TB. By synthesizing the findings from relevant studies, 
this review aims to offer a thorough examination of the 
present state and prospective contributions of aptamers 
towards improving TB diagnosis, thereby contributing to 
advancing TB diagnostic strategies and the ultimate goal 
of TB control and eradication.

Methods
Eligibility criteria
We conducted the present systematic review sys-
tematic review registered with PROSPERO (ID: 
CRD42023484420), adhering to the PRISMA guidelines 
[20]. The inclusion criteria for the study included (A) 
any peer-reviewed research that examined the efficacy 
of aptamers in diagnosing tuberculosis (B) studies that 
investigated various aspects of TB diagnosis, progno-
sis, progression, and treatment response. The study had 
specific exclusion criteria that were applied to filter out 
research studies that had (A) incomplete or inadequate 
documentation, and (B) articles that were written in lan-
guages other than English. Also, studies that were pre-
sented in the form of letters to the editor, abstracts in 
conferences, review articles, case reports, and articles 
lacking required information were also excluded.

Information sources
We systematically explored articles from 1990 until 
November 2023 in databases such as the Web of Sci-
ence (WOS), Scopus, PubMed, and Embase and Google 
Scholar. Additionally, we conducted searches in grey lit-
erature sources, specifically on allconferences.com, con-
ferencealerts.com, opengrey, and oatd.org. Lastly, we 
examined the reference lists of the articles incorporated 
in our systematic review.

Search strategy
We used the MeSH (Tuberculosis, Aptamers, Infec-
tions and SELEX Aptamer Technique) and non-MeSH 
(Kochs Disease, Mycobacterium tuberculosis, Nucleo-
tide and Aptamer-based technique) keywords to search 
related articles. This includes: #1 Tuberculosis or " Kochs 
Disease” or " Koch’s Disease” or " Koch Disease” or " 
Mycobacterium tuberculosis Infection” or " Infection, 
Mycobacterium tuberculosis” or " Infections, Mycobac-
terium tuberculosis” or " Mycobacterium tuberculo-
sis Infections”; and #2 “SELEX Aptamer Technique” or 
“Aptamers, Nucleotide” or Aptamer or “Aptamer-based 
technique”.

Selection process
Two examiners (MR and EI) assessed the titles and 
abstracts of all identified studies to identify research rel-
evant to this systematic review. In the subsequent phase, 
two researchers independently examined the complete 
texts of the studies to confirm their eligibility for inclu-
sion based on the criteria outlined in Section “Eligibil-
ity Criteria.” Any discrepancies were addressed through 
discussion, and in cases where disagreements could not 
be resolved, the third researcher (MHS) reached the 
ultimate decision (MHS). The third researcher reviewed 
the studies in question, considering both MR’s and EI’s 



Page 3 of 11Isaei et al. Tropical Diseases, Travel Medicine and Vaccines           (2024) 10:25 

assessments. A predefined set of inclusion and exclusion 
criteria was applied to ensure objectivity in decision-
making. Discrepancies were typically resolved by re-eval-
uating the study’s methodology, relevance to the research 
question, and whether the study met the eligibility crite-
ria. The third researcher’s decision was considered final, 
and this process ensured that only studies that met all 
necessary criteria were included in the final review. The 
first and second phases of screening process was con-
ducted utilizing the Endnote software version 9.

Data extraction
The process of collecting data involved individual extrac-
tion from the included articles by three researchers (MR, 
NF, and EI), adhering to the data extraction checklist. In 
cases where any disagreements remained unresolved, the 
final decision was made by the fourth researcher (MHS). 
The extracted data included the primary author’s name, 
the country where the study was conducted, the year the 
article was published, the sample under investigation, 
the type of aptamer under investigation, and the results 
reported.

Results
Study selection
The steps of choosing articles is illustrated in Fig. 1 using 
the PRISMA flow diagram [20]. A sum of 1165 studies 

was obtained through searches in the databases and grey 
literatures (1093 records from the official databases and 
72 records from the grey literatures). Prior to the initial 
screening phase, we excluded 412 records due to dupli-
cation. Two researchers initially screened the titles and 
abstracts of 681 articles. Subsequently, 621 articles (469 
articles in one step and 152 articles in the next step) were 
excluded due to not meeting the inclusion and exclu-
sion criteria. Out of the 60 studies chosen for a thorough 
examination of the full text, 25 studies were excluded 
based on the explanations provided in Fig.  1 and ulti-
mately, this study included a total of 35 studies [4, 21–54].

Aptamers usage for M. Tuberculosis and mycobacterial 
antigens determination
Table 1 shows a summary of the studies done in this field. 
While there are various serological methods for identify-
ing antibodies induced by Mtb, there is a specific period, 
referred to as a “window of time,” during which myco-
bacterial antigens are present in serum samples without 
the concurrent production of host antibodies [55]. As a 
result, assessing the content of serum samples within 
this timeframe might yield a misleading negative result. 
Furthermore, existing serological methods, whether 
commercial or experimental, are incapable of discerning 
individuals with active TB from those who have received 
the BCG vaccine or are latently infected. In this scenario, 

Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram (2020) of search process for studies examining the application 
of aptamer in Tuberculosis diagnosis: A systematic review
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First 
Author

Aptamer name Target Method Approach 
for efficacy 
evaluation

Linear range Aptamer sequency

Kil B (2023) Single-stranded DNA aptamer ESAT-6 Aptamer-based 
qPCR

LOD: 2.5 mg L− 1 NR NR

Huang H 
(2023)

MXene/C60NPs/Au@Pt/APt2 ESAT-6 dual-signal 
output

LOD: 2.88 fg 
mL− 1

100 fg mL− 1 
to 50 ng mL− 1

NR

Bethu R 
(2023)

H63SL2-M6 HspX and 
MPT 64

ALISA technique NR NR NR

Zhou Y 
(2021)

MPT64-A1 ManLAM Aptamer-based 
immunohisto-
chemistry (IHC) 
method

LOD: 2.5 mg L− 1 10–800 mg 
L− 1

NR

Azmi U 
(2021)

capture aptamer CFP10-
ESAT6 
antigen

Electrochemical 
Aptamer-Based 
Assay

LOD: 2.5 ng/mL 5 to 500 ng/
mL

50-NH2-GCC TGT TGT GAG CCT 
CCT AAC CCC ATC TTA TAC GTA 
TAT GGA CTC ATC TCG ACC CCC 
GAT AGG CTT GGT ACA TGC TTA 
TTC TTG TCT CCC-30

Kumari P 
(2019)

single stranded DNA HspX ALISA NR NR ′CTG
ACGAGGCCATGCTAGATGCGAT3′ 
and devR R spec 5′​C​C​A​G​C​G​C​
C​C​A​C
ATCTTTGA3′

Li N (2019) AuNPs/UiO-66-NH2 MPT64 Electrochemical 
measurements

< 10 fg·mL− 1 −8.1543–
1.7625 
pg·mL− 1

APT-I: 5’-SH-(CH2)6-​T​G​G​G​A​G​C​T​G​
A​T​G​T​C​G​C​A​T​G​G
​G​T​T​T​T​G​A​T​C​A​C​A​T​G​A-3

Sypa-
bekova M 
(2019)

single stranded DNA MPT64 electrochemi-
cal impedance 
spectroscopy

4.1 fm 0.1 fM to 5 nM NR

Lavania S 
(2018)

H63SL2-M6 HspX ALISA NR NR NR

Zhang X 
(2017)

Single-stranded DNA aptamer H37Rv Immobilizing
thiol-modified 
aptamer on 
an Au inter-
digital electrode 
(Au-IDE)

100 cfu/mL NR 5′-​G​G​G​A​G​C​T​C​A​G​A​A​T​A​A​A​C​G​C​T​
C​A​A (N35) ​T​T​C​G​A​C​A​T​G​A​G​G​C​C​
C​G​G​A​T​C
-3′, forward primer 5′-​G​G​G​G​A​G​
C​T​C​A​G​A​A​T​A​A​A​C​G​C​T​C​A​A-3′

Thakur H 
(2017)

Poly(3,4-ethylenedioxythio-
phene) (PEDOT) doped with 
carbon nanotubes (CNTs)

MPT64 Electrochemical 
impedance

0.75 fg mL− 1 5’-[Btn]​G​T​A​C​A​A​A​C​G​A​C​G​G​C​C​A​G​
T​C​C​T​T​G​G​G​A​T​G​A​T​T​C​A​A​G​C
​A​A​A​G​C​C​T​C​A​C​G​C​C​T​A​C​G​G​C​T​A​
A​G​T​C
​A​T​A​G​C​T​G​T​C​T​C​T​C​C​T​G-3’

Sypa-
bekova M 
(2017)

single stranded DNA MPT64, 
ESAT-6 and 
CFP-10

sandwich 
enzyme
linked oligo-
nucleotide assay 
(ELONA)

kd= 8.85 * 10− 4 NR 50- TCA CTT CAA
ATG TGC GCT TC e N40 e CGT 
CAA AAC AGG GGG TAG AA − 30

Russell Th 
(2017)

SOMAmer Mycolyl-
transferase, 
antigen 
85 A, FbpA

Agilent 
Technologies

LOD: 2.6 * 107 
cells/ml

1.2 * 104

to 6.8 * 104 
CFU/ml

NR

Bai L (2017) GNPs-C60-PAn MPT64 
antigen

electrochemical
impedance 
spectroscopy

20 fg/mL 0.02 to 1000 
pg/mL

50-SH-(CH2)6-​T​G​G​G​A​G​C​T​G​A​T​G​
T​C​G​C​A​T​G
​G​G​T​T​T​T​G​A​T​C​A​C​A​T​G​A-3

Ansari N 
(2017)

Apt8 and Apt22 Ag85A 
(FbpA)

SELEX Kd = 62.95 nM 2.1 nM 5′-GCTGTGTGACTCCTGCAAN43-​
G​C​A​G​C​T​G​T​A​T​C​T​T​G​T​C​T​C​C-3′

Mozioglu E 
(2016)

Mtb36 Whole M. 
tuberculosis 
(H37Rv) cell

qPCR Kd: 5.09 ± 1.43 
nM

NR NR

Table 1  The use of aptamers in the diagnosis of tuberculosis through the effect on antigens
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the whole-bacterial selection method using aptamers is 
characterized as a straightforward, direct, and easily rep-
licable approach that can be implemented without prior 
knowledge of the target molecules [56].

In an experimental investigation, Huang et al. assessed 
the performance of an electrochemical aptasensor uti-
lizing dual-signal output for highly sensitive detec-
tion of MTB early secreted antigenic target 6 (ESAT-6) 
antigen. They found that using MXene/C60NPs/Au@
Pt nanocomposite as signal amplification was able to 
detect the antigen successfully. As anticipated, the pro-
duced MXene/C60NPs/Au@Pt nanocomposite exhib-
ited impressive redox activity and catalytic performance, 
leading to dual-signal output that effectively minimized 
background interference and enhanced sensitivity. Addi-
tionally, the suggested aptasensor demonstrated notable 
reproducibility, stability, and specificity [57, 58].

In identifying aptamer sequences influencing specific 
binding, Mozioglu and colleagues conclusively illustrated 
that exceptionally specific aptamers featured “G-repeats” 
at the 3’ end of their structures and were enriched with 
“TGGGG,” “GTGG,” and “CTGG” motifs [36]. Numer-
ous investigations have showcased the capability of 
aptamers to target crucial proteins and components of 
Mycobacterium tuberculosis, such as acetohydroxy acid 
synthase (AHAS) [45], mannose-capped lipoarabino-
mannan (ManLAM) [59], and polyphosphate kinase 2 
[60]. ManLAM, the chief lipoglycan on the surface of 
M. tuberculosis, serves as an immunosuppressive epi-
tope of the bacterium. Aptamer ZXL1 was created to 
specifically attach to ManLAM originating from the 
virulent Mtb strain H37Rv [61]. Hence, the aptamer 
ZXL1 has the potential to function as an innovative 

antimycobacterial agent and as an immune adjuvant for 
tuberculosis vaccines.

Other antigens that were evaluated as targets in the 
aptamer‑based assay are heat shock protein X (HspX) 
antigen and MPT 64. The 16-kDa HspX antigen is cru-
cial for the persistence of Mycobacterium tuberculosis 
under harsh conditions and facilitates the bacterium’s 
replication. The MPT-64 antigen, or Rv1980c, serves as a 
particular virulence factor and is generated and released 
exclusively by actively dividing cells. The outcomes of 
their investigation indicated that the aptamer-linked 
immobilized sorbent assay (ALISA) technique for myco-
bacterium antigens HspX and MPT 64 proved to be a 
swift and cost-effective test (costing 1–3 dollars per test) 
with high sensitivity and specificity, comparable to exist-
ing methods [62, 63]. An aptamer known as H63SL2-M6, 
designed to target HspX, was proven effective in detect-
ing HspX in the sputum of individuals with TB. This 
detection was achieved through the ALISA method, and 
the performance of ALISA surpassed that of traditional 
ELISA [27].

During infection, the natural immune system 
responses, characterized by the secretion of antibod-
ies, can be employed as diagnostic and prognostic sig-
nals, providing insights into the presence of pathogens 
at different infection levels. Nevertheless, variations 
in antigenic properties occur due to the acquisition of 
recombinant proteins from diverse batch processing or 
the influence of contaminants originating from cloning 
vectors. This discrepancy leads to fluctuations in assay 
accuracy [64, 65]. Hence, Zhu et al. designed a diagnostic 
approach for pulmonary tuberculosis that employs bioti-
nylated aptamers targeting anti-MPT64 antibodies. They 
showed that the ELISA method achieved a minimum 

First 
Author

Aptamer name Target Method Approach 
for efficacy 
evaluation

Linear range Aptamer sequency

Tang X 
(2016)

T9 ManLAM ELONA Kd: 668 ± 159 
nmol L− 1

NR NR

Biag I 
(2015)

Mtb-Apt1 and Mtb-Apt6 AHAS To inhibitory 
purposes

IC50: 28.9 ± 0.002 NR Mtb-Apt1:
5′​C​G​A​G​T​G​A​G​G​G​C​G​A​G​G​C​G​C​G​
C​T​C​C​T
GCCGGT-3′Mtb-Apt6:5′​C​G​G​C​C​A​
G​G​G​G​A​C​G​A​G​C​G​C​G​C​C​C​T​G
ATCGTG-3′

Qin L 
(2014)

PAA1 Anti-MPT64 
antibody

ELISA Kd: 8.68 nmol L− 1 NR NR

Tang X 
(2014)

CE15 and CE24 ESAT6 and 
CFP10

ELONA Kd: 1.6 × 10− 7 M NR NR

Rotherham 
L (2012)

CSIR 2.11 CFP-10. 
ESAT-6

ELONA Kd: 861.07 nM NR NR

AHAS, Acetohydroxyacid synthase; ALISA, Aptamer Linked Immobilized Sorbent Assay ; ELONA, Enzyme-Linked Oligonucleotide Assay; ESAT-6, early secreted 
antigenic target 6; Qpcr, quantitative PCR ; LOD: Limit of Detection, ITC: Isothermal titration calorimetry; ManLAM, Mannose-capped lipoarabinomannan; NR, not 
reported, Kd: dissociation constant

Table 1  (continued) 
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detection limit of 2.5 mg/L. Also, it has been reported a 
considerable sensitivity (64%) and specificity (94%) for 
this method [40]. Comparable results were documented 
in other study by Sypabekova et al. Their investigation 
findings demonstrated that using a ssDNA aptamer 
designed to identify the MPT64 protein for tuberculosis 
diagnosis specifically exhibited notable sensitivity and 
specificity [24]. One of the limitations of this method in 
some studies has been its low detection limit. For solv-
ing this problem, in some studies researchers used from 
nanohybrid structures by synthesizing fullerene-doped 
polyaniline (C60-Pan) and decorating them with MPT64-
specific aptamers. As a consequence, an extraordinarily 
sensitive electrochemical aptasensor was developed, 
boasting a limit of detection (LOD) of 20 fg mL− 1 [32].

In other studies, scientists employed a portable elec-
trochemical biosensor based on aptamer-antibody sand-
wiches to detect tuberculosis-associated antigens. Azmi 
et al. evaluated the efficacy of this method against CFP10-
ESAT6 antigen and they found a substantial correlation 
with the culture method, demonstrating 100% efficacy 
[22]. Proteins known as Culture Filtrate Protein-10 (CFP-
10) and ESAT-6 are released upon TB infection. The 
aptamer CSIR2.11 can identify both the CFP-10-ESAT-6 
complex and CFP-10 alone in sputum samples obtained 
from individuals with TB. In sputum samples from TB 

patients, CSIR 2.11 demonstrated a sensitivity of 100% 
and a specificity of 68.75% [41]. Moreover, a point-of-care 
(POC) diagnostic electrochemical sensor (ECS) device 
was created using the H63SL2-M6 aptamer for rapid 
diagnosis [27]. The CFP10-ESAT6 complex, exclusively 
released by M. tuberculosis during its initial cultivation 
period, exhibited increased sensitivity in identifying the 
presence of Mtb in compared to individual components 
[66]. These two distinct biomarkers for tuberculosis are 
absent in numerous non-tuberculous mycobacteria and 
the M. bovis BCG vaccine variant [55].

Aptamers based on interferon gamma detection
The drive to create innovative technologies for detect-
ing cytokines, particularly when the immune system 
encounters antigens from mycobacteria, is growing more 
compelling. In response to antigen stimulation, IFN-γ is 
primarily produced by macrophages and T helper cells 
(CD4+) [67]. This production is utilized to ascertain past 
exposure to infectious diseases. Clinically, the detection 
of IFN-γ release by T-cells is an indication of severe TB. 
In experimental models, it is utilized to validate the pres-
ence of immune T cells associated with the disease. IFN-
γ’s primary function is to regulate the immune reaction 
at a cellular level to both viral and TB agents [68]. The 
Interferon-gamma release assay (IGRA) is a blood test 
based on the immune system’s response to detect MTB 
infection. The test measures T cell immune response 
to TB antigens, producing interferon-gamma upon re-
exposure. A remarkable interferon-gamma production 
is presumed to indicate a tuberculosis infection [69]. 
A limitation of the IGRA test is its reduced sensitivity 
in detecting active TB, particularly in individuals with 
weakened immune systems. The assay cannot distinguish 
between active and latent tuberculosis infections, render-
ing it inappropriate for diagnosing active TB disease [70]. 
Therefore, according to the limitations of these conven-
tional assay techniques, using aptamers as a new method 
has been considered in new studies.

Table  2 summarizes various categories of aptamers 
employed in biosensing methods related to IFN-γ. Dif-
ferent research teams have documented specific aptam-
ers targeting or participating in pathways associated with 
IFN-γ. Liu et al. in an experimental study reported the 
description of a biosensor based on a Methylene Blue 
(MB) redox-tagged DNA hairpin aptamer for the identi-
fying of IFN-γ [71]. Some studies have used the fluores-
cent aptasensor. Within fluorescent sensors, the target 
molecule or biorecognition element is marked with a 
fluorescent label, and the fluorescence intensity indicates 
the strength of the interaction between the biorecog-
nition molecule and the target. Zhang and colleagues 
designed a fluorescence biosensor for detecting IFN-γ 
with exceptional sensitivity and specificity, utilizing a 

Table 2  Various categories of aptamers employed in biosensing 
methods related to IFN-γ in TB detection
First 
Author

Method name Aptamer 
type

Efficacy amounts Linear 
range

Taghdisi S amplified 
fluorescent 
aptasensor

Single-
stranded 
DNA 
aptamer

LOD: 10 pM 0.01 
to 100 
nM

Wang X Immunosensor Single-
stranded 
DNA 
aptamer

LOD: 1.6 pg/mL 1.5–200 
pg/mL

Tuleuova N surface plas-
mon resonance

Single-
stranded 
DNA 
aptamer

35 pM 0.2 to 
333 
nM

Parate K Electrochemical 
immunosensor

capture 
aptamer

100–5000 pg/mL 25 pg/
mL

Yao X Microfluidic 
biosensor

T-DNA/
MCH/CP/
AuNCs-
Gr@
ZIF-8/
GCE

11.43 pg/mL 10–
10,000 
pg/mL

Kim H Liquid crystal 
aptasensor

APTES/
DMOAP-
treated 
glass-
aptam-
eretha-
nolamine

17 pg/mL 0.0169–
844 pg/
mL
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G quadruplex aptamer bonded with malachite green 
(MG). They attained a detection limit of 7.65 fM in a buf-
fer, exhibiting a linear range from 0 fM to 20 pM and a 
recovery range of 95.29–118.08% in real samples. Their 
achievement reflects a notable sensitivity and specific-
ity toward the target [72]. In the research conducted by 
Wen et al., they also created a fluorescent sensor, but 
their approach involved DNA click polymerization. They 
devised a novel fluorescent sandwich structure consisting 
of aptamer/protein/aptamer. This configuration demon-
strated sensitivity, selectivity, and stability in detection 
[73].

In recent years, a novel electrochemical aptasensor has 
been developed for evaluating IFN-γ, utilizing a modified 
electrode with graphene and gold nanoparticles (AuNPs) 
and incorporating dual enzyme-assisted signal ampli-
fication. This particular sensor has achieved an impres-
sively detection threshold as low as 2 picomolar (pM) and 
demonstrated a broad linear detection range from 5 pM 
to 5 nanomolar (nM). When IFN-γ was present, binding 
of the aptamer to IFN-γ resulted in the detachment of 
aptamers from the electrode surface. Concurrently, RecJf 
exonuclease digested the aptamers, making IFN-γ acces-
sible for target recycling. In this procedure, IFN-γ was 
utilized as capture probes, which interacted with linker 
probes and reporter probes labeled with biotin to form 
hybridizations [48].

If the biorecognition component of the biosensor is an 
antibody, it is classified as an immunosensor. Immuno-
sensors exploit the high affinity between antibodies and 
antigens to detect particular analytes by employing an 
appropriate signal transducer. Sanchez-Tirado and col-
laborators engineered an electrochemical immunosensor 
designed for the detection of IFN-γ in saliva. The bio-
sensor utilized a sandwich-type immunoassay, involving 
the attachment of a capture anti-IFN-γ antibody to the 
electrode surface through the diazonium salt grafting of 
p-aminobenzoic acid. They attained a detection thresh-
old of 1.6 picograms per milliliter (pg/mL) and a linear 
range from 2.5 to 2000 pg/mL [74].

Furthermore, Ruecha and colleagues devised a label-
free impedance immunosensor constructed on paper. 
They augmented the paper-based electrode with poly-
aniline-graphene and immobilized human IFN-γ anti-
body onto it. Electrochemical impedance was employed 
for the specific detection of interferon-gamma in human 
serum, showcasing a sensitive, straightforward, fast, and 
cost-effective method. The achieved results include a 
detection limit of 3.4 picograms per milliliter (pg/mL), 
a linear range of 5–1000 pg/mL, and a recovery range of 
101–104% in human serum [49]. Zhang and colleagues 
created a sandwich-type electrochemical immunosensor. 
They devised a disposable indium tin oxide electrode to 
construct their immunosensor. The immunosensor they 

developed demonstrated a detection threshold of 0.048 
picograms per milliliter (pg/mL) along with an extensive 
linear range spanning from 0.1 to 1 × 104 pg/mL [50].

Recently, microfluidic devices have surfaced as poten-
tial diagnostic tools suitable for deployment in resource-
limited countries. These chip-based sensing techniques 
utilize minimal sample volumes, enabling real-time, 
point-of-care diagnosis for infectious diseases. Microflu-
idics facilitates the analysis of various clinical samples, 
including urine, blood, or saliva [75].

In recent years, there has been a notable focus on mul-
tiplex assay detection methods. Multiplex assay detection 
enables the simultaneous measurement of multiple ana-
lytes [76]. Wang and colleagues proposed that employing 
multiplex biomarker assays, rather than single cytokine 
assays, for diagnosing active TB could improve diagnos-
tic accuracy. They utilized a microbead-based multiplex 
assay to analyze several biomarkers, and from these, five 
chemokines/cytokines were identified as capable of dis-
tinguishing between patients with active pulmonary TB 
and healthy controls. They found that utilizing a multi-
plex approach significantly enhanced the diagnostic per-
formance for TB when compared to individual detection 
methods [77].

Discussion
The systematic review presented in this manuscript high-
lights the growing interest in aptamer-based technolo-
gies for the diagnosis of TB, specifically focusing on their 
ability to detect MTb antigens with high sensitivity and 
specificity. Given the limitations of traditional TB diag-
nostic methods, including sputum smear microscopy and 
culture, aptamer-based assays offer an innovative and 
promising alternative, particularly in settings where rapid 
and accurate diagnosis is critical.

The studies reviewed encompassed a diverse range of 
aptamer applications, focusing on the detection of MTB 
and mycobacterial antigens [38]. Notably, the aptamer-
based assays exhibited promising results regarding sen-
sitivity, specificity, and cost-effectiveness. Various studies 
utilized different aptamer sequences targeting specific 
MTB components, such as ESAT-6, HspX, and MPT 64. 
The aptamer-based assays demonstrated the capability 
to distinguish between active TB and alternative con-
ditions, showcasing their potential as valuable tools in 
TB diagnosis [26, 27, 62]. In the realm of IFN-γ detec-
tion, a key marker for TB, aptamer-based biosensors 
showed considerable promise. These biosensors, whether 
employing electrochemical, fluorescent, or immunosen-
sor approaches, demonstrated elevated levels of accuracy 
and selectivity. The versatility of aptamers was evident in 
their ability to target IFN-γ and contribute to developing 
innovative diagnostic technologies [48, 78].
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ESAT-6 is one of the most extensively studied TB anti-
gens, particularly due to its absence in the BCG vaccine 
strain and non-tuberculous mycobacteria, making it a 
specific marker for active M. tuberculosis infection [79]. 
These aptamer-based platforms offer a significant advan-
tage in distinguishing between active TB and latent TB or 
BCG-vaccinated individuals, addressing one of the major 
limitations of traditional diagnostic methods. The ability 
to detect such low antigen levels suggests that aptam-
ers targeting ESAT-6 could play a crucial role in early 
diagnosis, helping to curb TB transmission and improve 
patient outcomes [80].

HspX is another antigen critical for the survival of M. 
tuberculosis under stress conditions, particularly dur-
ing latent infections. Aptamer-based assays targeting 
HspX, such as the H63SL2-M6 aptamer, have demon-
strated the capability to detect HspX in clinical samples 
like sputum [81]. The stability and high binding affinity 
of these aptamers make them particularly suitable for 
use in resource-limited settings, where robust and reli-
able diagnostic tools are required. The high sensitivity of 
aptamer-linked assays for HspX highlights their potential 
as diagnostic tools for detecting both active and latent TB 
infections, especially in cases where traditional methods 
may fall short [82].

MPT64 is another antigen secreted by actively dividing 
M. tuberculosis cells and has been the target of numerous 
aptamer-based diagnostics [83]. Studies have shown that 
MPT64-specific aptamers can be used in various plat-
forms, including electrochemical biosensors and ELISA-
like assays, to achieve highly sensitive detection [84]. 
Some studies have shown that aptamer-based sensors for 
MPT64 can detect antigen concentrations at femtogram 
levels, indicating their utility in diagnosing early-stage 
TB [85, 86]. These biosensors not only offer high sensitiv-
ity but also provide a rapid and cost-effective alternative 
to traditional TB diagnostics, making them highly suit-
able for widespread use in TB-endemic areas [86].

Moreover, aptamers targeting these antigens, particu-
larly when combined in multiplex assays, offer a signifi-
cant advantage by allowing simultaneous detection of 
multiple TB biomarkers. This multiplexing capability 
enhances the overall diagnostic accuracy, especially in 
differentiating between active TB, latent infections, and 
other pulmonary diseases that may present similar clini-
cal symptoms [19].

Aptamer biosensors represent a cutting-edge tool in 
TB diagnostics, offering unique advantages in sensitiv-
ity and specificity, especially in cases where traditional 
diagnostic methods struggle. In paucibacillary TB, where 
bacterial load is low, conventional methods like sputum 
smear microscopy often yield false negatives due to insuf-
ficient bacteria in clinical samples [87]. Aptamer-based 
biosensors, with their ability to detect extremely low 

concentrations of antigens, provide a significant advan-
tage in these cases. Studies have shown that aptamers can 
detect key antigens such as ESAT-6, HspX, and MPT64 
at femtogram levels, making them highly suitable for 
diagnosing TB even in paucibacillary conditions, where 
bacterial presence may be minimal. This capability could 
be particularly beneficial in early diagnosis or in patients 
with low bacterial loads [17].

For extra-pulmonary TB, where traditional meth-
ods like sputum tests are less effective due to the non-
respiratory nature of the infection, aptamer biosensors 
offer a promising alternative. By targeting specific TB 
biomarkers present in blood, cerebrospinal fluid, or tis-
sue samples, aptamers can provide non-invasive diag-
nostic options for detecting TB in locations outside the 
lungs. For instance, biosensors targeting antigens such 
as MPT64 or ManLAM have shown promise in detect-
ing extra-pulmonary TB with high sensitivity [18]. This 
ability to detect TB across a variety of sample types sig-
nificantly broadens the applicability of aptamers in TB 
diagnostics, addressing a crucial gap in current testing 
methods [88].

In addition to diagnosing paucibacillary and extra-pul-
monary TB, aptamers also hold potential in the detec-
tion of drug-resistant TB. Aptamers can be engineered 
to specifically bind to mutated forms of Mycobacterium 
tuberculosis proteins associated with drug resistance. For 
example, aptamers have been designed to target rpoB 
gene mutations, which are linked to rifampicin resis-
tance, one of the key markers of multidrug-resistant TB 
(MDR-TB) [12]. Aptamer-based biosensors could there-
fore serve as a rapid and cost-effective means of identi-
fying drug-resistant strains of M. tuberculosis, enabling 
faster treatment decisions and helping to curb the spread 
of resistant TB strains [89].

In summary, aptamer biosensors provide several key 
benefits in diagnosing paucibacillary and extra-pulmo-
nary TB, and they also show promise in identifying drug-
resistant TB strains. These capabilities further highlight 
the versatility and potential of aptamer-based diagnostics 
in addressing some of the most challenging aspects of TB 
detection and management.

The study conducted was characterized by various 
advantages. These include a thorough examination of the 
current level of research on applying aptamers in tuber-
culosis diagnosis, well-defined eligibility criteria, a strict 
selection process, and comprehensive data extraction.

It’s crucial to emphasize that the present study has a 
few limitations that may impact the results:

1.	 The findings may not be generalizable due to 
variations in study populations, methodologies, and 
aptamer applications across different studies.
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2.	 Despite a detailed extraction process, some studies 
may require more comprehensive documentation or 
sufficient data, limiting the depth of analysis.

Conclusions and future perspectives
In nations where TB prevalence is high, achieving afford-
able and dependable diagnostic tools is a key objective 
for disease control. Biosensors, particularly aptasensors, 
are positioned as crucial components in addressing this 
need. This review emphasized a diverse range of aptas-
ensors specifically crafted to identify TB, demonstrating 
a detection sensitivity within the femtomolar range for 
biomolecules linked to the pathogen. Given the crucial 
role of diagnosis during the latent phase, there remains 
a necessity to create cost-effective devices with reduced 
detection thresholds suitable for clinical and screening 
applications.
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